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SUMMARY 

A segregated algorithm for the solution of laminar incompressible, two- and three-dimensional flow problems is 
presented. This algorithm employs the successive solution of the momentum and continuity equations by means of 
a decoupled implicit solution method. The inversion of the coefficient matrix which is common for all momentum 
equations is carried out through an approximate factorization in upper and lower triangular matrices. The 
divergence-free velocity constraint is satisfied by formulating and solving a pressure correction equation. For the 
latter a combined application of a preconditioning technique and a Krylov subspace method is employed and 
proved more efficient than the approximate factorization method. The method exhibits a monotonic convergence, 
it is not costly in CPU time per iteration and provides accurate solutions which are independent of the 
underrelaxation parameter used in the momentum equations. Results are presented in two- and three-dimensional 
flow problems. 
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1. INTRODUCTION 

Laminar incompressible flows appearing in engineering and biomedical systems are typical test cases 
for validating Navier-Stokes solution methods. Finite-volume methods in curvilinear grid systems are 
widely used to discretize the flow equations. Depending on how the continuity equation is 
implemented, artificial compressibility’ or pressure c~r rec t ion~’~  technique are used. 

The present method is based on the SIMPLE algorithm4 which was originally developed for 
staggered grid arrangements. Aiming at a wider flexibility in the analysis of complex geometries, the 
collocated grid arrangement is adopted in this paper at the expense of a procedure which circumvents 
velocity-pressure decoupling. Both two- and three-dimensional domains are discretized using body- 
fitted curvilinear co-ordinates, where all flow variables are stored at the centres of the computational 
cells. The method is capable of handling non-orthogonal grids even though orthogonal curvilinear ones 
are used in most of the examined cases. The exact pressure correction equation is written at each cell 
centre and is extended over the cell faces under physically reasonable assumptions. This allows the 
expression of the contravariant velocity components at cell faces through a wider pressure molecule (in 
conformity with the original scheme of Rhie and Chow’), which prevents decoupling between velocity 
and pressure fields. This analysis, combined with appropriate numerical schemes, leads to a fast 
convergence of the continuity equation and a smooth solution field which is independent of the 
underrelaxation factor used in the momentum equations. 

From a numerical point of view the elliptic character of the governing equations is retained and a 
segregated solution algorithm is established in conjunction with fast elliptic solvers. The two (for 2D 
problems) or three (for 3D problems) momentum equations are solved by applying the modified 
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strongly implicit procedure (MSIP)6 for scalar equations. This is carried out at the expense of a single 
factorization of the common coefficient matrix resulting from the discretization of the momentum 
equations. The pressure corrrection equation is solved at the end of each iteration using a minimization 
algorithm for the preconditioned residual of the continuity equation. This algorithm is a degenerate 
variant of the restarted generalized minimal residual technique7 and could be referred to as 
GMRES(1). For the pressure correction equation this scheme was proved more efficient than the 
typical MSIP solver. The proposed algorithm exhibits a monotonic, although slightly wavy, 
convergence. 

The assessment of the proposed method will be demonstrated through a number of two- and three- 
dimensional laminar flow problems. Useful conclusions are drawn about (a) the convergence properties 
of the segregated algorithm, (b) the comparative behaviour of the two numerical solvers used for the 
pressure correction equation, (c) the advantages as well as the additional cost of using a full 
discretization molecule (including non-orthogonal terms) in the pressure correction equation and (d) 
the role of underrelaxation in the momentum and continuity equations. 

2. GOVERNING EQUATIONS 

Governing equations will be presented in the case of three-dimensional flows. Steady incompressible 
fluid motion is governed by the continuity and the momentum conservation equations, which can be 
written in a Cartesian co-ordinate system (xi, i = 1, 2, 3) as 

auj 
ax, 

= 0, - 

- (u .u . )  a - --+- ap a [ v (aw -+- ",)I , i =  1,2 ,3 ,  
ax, ' - axi ax, ax, axi 

where ui, i = 1, 2, 3, are the three Cartesian velocity components and v is the kinematic viscosity of the 
fluid. A repeated index denotes summation over the three spatial components. When a body-fitted 
curvilinear co-ordinate system is introduced, new independent variables (e, i = 1, 2,  3) appear and 
equations (1) and (2) need to be transformed accordingly. If J is the Jacobian of the transformation, i.e. 

the aforementioned equations can be cast in the form 

a 
agj  -(JVJ) = 0,  

a 
i = 1 , 2 , 3 ,  

(4) 

where dk is the contravariant metric tensor of the transformation and VJ,j= 1, 2, 3 stand for the 
contravariant velocity components. These are expressed as the inner product of the Cartesian velocity 
vector and the contravariant base vectors, namely 

+ 

vj= v . ~ J ,  j =  1,2,3,  (6 )  

where 
+ .  
g' = VCJ, j = 1,2,3.  (7) 
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In equation (5) the pressure gradient term is retained in its Cartesian form for reasons that will 
become clear in a later section where the pressure correction algorithm is discussed. It is also to be said 
that p stands for the static pressure divided by the density, which remains constant all over the flow 
field. 

3. DISCRETIZATION 

In this section the application of a finite volume technique for the discretization of the governing 
equations will be presented. This will be done in the general, three-dimensional, flow case, the two- 
dimensional one being so straightforward that the reader could work it himself. The computational 
cells consist of volumes defined by eight neighbouring grid nodes. All flow variables are stored at the 
centres of these cells and, apart from the Cartesian velocity components, linear interpolations are used 
for the calculation of any other flow quantity at the centres of the six faces. Figure 1 illustrates such a 
computational cell and conveys to the reader the main notation used in the present analysis. 

Equations (5) are integrated by applying the Gauss theorem over the control volume surrounding 
any node P at which the flow quantities are stored. This integration leads to the balance of the 
momentum fluxes at the six faces of the control volume and the body forces acting on the control 
volume. The fluxes at cell faces involve both convective and diffusive terms and the momentum 
equation, written for the ith Cartesian velocity component, yields 

i =  1 ,2 ,3 ,  (8) 

where Pi, i = 1, 2, 3, stand for the integrals of the pressure gradient terms and Ci summarize the cross- 
diffusion terms which involve the metric quantities gi' (i#j). The terms Ci can be treated either 
explicitly or implicitly. Depending on how these terms are handled, the discretized momentum 
equations involve seven (if Cj are treated explicitly) or 19 neighbouring nodes. The case of a 19-node 
molecule will not, however, be elaborated in this section in the interest of space. The seven-node 
discretization scheme reads 

0 FACENODES 

8 VARIABLE NODES 

0 GRIDNODES 

F 

Figure 1. Three-dimensional control volume in the physical space and relevant notation 
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where AP is the central node coefficient and the superscripts on the dependent variables ui denote the 
nodes where these are referred to. 

The finite difference coefficients depend on the convective velocities, the metrics of the 
transformation and the discretization schemes used. Central differences for the diffusion and three 
different discretization schemes for the convection terms were programmed and tested, namely 

(a) the first-order upwind scheme, with enhanced stability properties at the expense of accuracy, 
where the convected quantities at the mid-faces of any control volume are set equal to their 
values at the centre of the upwind cell' 

(b) the hybrid upwindcentral scheme: which is identical with the central scheme when the absolute 
value of the local Peclet number (for each velocity component at the cell faces) is less than two; 
otherwise the scheme reduces to the first-order upwind scheme with zero diffusion terms 

(c) the QUICK scheme," which employs a three-point upstream-weighted quadratic interpolation 
technique; in this work the consistently formulated QUICK scheme of Hayase et al." is used, 
which introduces additional source terms lumped in the RHS part of equation (8). 

It must be pointed out that the three momentum equations share the same finite difference 
coefficient matrix [A]. Thus for the solution of the three momentum equations a single matrix inversion 
is required, diminishing the computational time. 

In the course of the iterative algorithm the numerical solution of the momentum equations provides 
an intermediate velocity field uy, i = 1 ,  2, 3, which in general does not satisfy the continuity equation. 
Following the pressure correction concept: both pressure and velocities are corrected according to the 
expressions 

where superscripts in parentheses stand for the iteration level. We recall that the intermediate velocity 
field uy, i =  1, 2, 3, is the outcome of the solution of (9) at the geometrical centres of the control 
volumes. It is also to be said that equations (9) are underrelaxed by means of a factor w and read 

In order to formulate the pressure correction equation, it is assumed that equation (1 1)  is also valid at 
the centres of the cell faces. At the same locations the contravariant velocity components must be 
calculated since they are involved in the continuity equation; this is performed on the basis of equation 
(1 1). Let m be any face centre lying between the central node P and the neighbouring one M. A 
rearrangement of terms in (1 1) leads to the following expression for the contravariant velocity 
component V; (z = 1,  2, 3) normal to the corresponding face: 

(12) 

The last term in equation (1 2) is treated explicitly in order to prevent any dependence of the solution on 
the underrelaxation factor w. Velocity-pressure decoupling is overcome by means of a centred finite 
difference analysis of the pressure gradient term in (12). Assumptions are to be made about how 
quantities involved in (1 1) are transferred to the cell faces, namely 
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1 1  1 
- = -fM +-(1 - fM), 
Am AP AM 

where fM is an interpolation coefficient used for the calculation of any scalar quantity at the point m 
from its values at the surrounding nodes P and M. Assumptions (13) are in accordance with the 
momentum interpolation scheme of Majumdar," although in the present method the whole pressure 
gradient term is retained. 

In order not to damage the already satisfied momentum equations, it is proposed that the pressure 
and (contravariant) velocity corrections introduced in (10) must be linked through the relation 

which also holds for any integer node in the form 

The pressure correction equation is merely formed by requiring that the corrected velocity components 
satisfy the divergence-free constraint. It can be written in the standard form 

C B k p l -  Bppk 4- s* = 0, (15) 
k 

where the source term S* stands for the non-zero divergence of the provisional velocity field 
ti:, i = 1, 2, 3. In equation (1 5 )  k runs over either six or 18 neighbouring nodes of l? If the reduced 
seven-node molecule is used, equation (14) is fiuther simplified by neglecting all cross-metrics. The 
use of a complete discretization molecule, which accounts for 19 nodes, is meaningful in cases of non- 
nrthnonnal ~rriirlc'~ and iiciiallv irlPrrc=acec the niimher nf itpmtive ctpnc rpmiirprl with the nffcet nf 

4. NUMERICAL SCHEMES 

After discretizing the governing equations, the linearized momentum and the pressure correction 
equations can be expressed in matrix form as 

[A];  = g. (16) 

As mentioned above, all three momentum equations share the same coefficient matrix [A] and 
consequently a single inversion of [A] is required. 
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The proposed solution algorithm is an iterative one based on the successive solution of the 
discretized equations through implicit schemes. The following steps are identified. 

Step 1. 
Step 2. 
Step 3. 

Step 4. 
Step 5. 
Step 6. 

Calculation of [A]  by discretizing the momentum equations. 
Approximate inversion of matrix [A] .  
Successive solution of the three momentum equations using the same implicit scheme for 
all equations. An intermediate velocity field, which in general fails to satisfy the divergence- 
free constraint, is calculated. 
Calculation and approximate inversion of matrix [B]  for the pressure correction equation. 
Solution of the pressure correction equation using an implicit scheme. 
Velocities and pressure are updated at the cell centres. In the same step the contravariant 
velocities at the control volume faces are also updated and stored. 

Aiming at the optimum convergence rate, two different numerical schemes for the solution of the 
pressure correction equation (Step 5 )  were implemented and tested. These will be referred to as Solvers 
P1 and P2 and are analysed below. With regard to the momentum equations the same implicit solution 
method (Solver P 1) was exclusively used. For the sake of simplicity the model equation (1 6 )  will be 
analysed herein, with [A]  standing for [A]  or [B]  accordingly. 

The first solution scheme (Solver P1) is the modified strongly implicit procedure.6 According to the 
MSIP, [A]  is approximately decomposed into an upper and a lower triangular matrix, i.e. 

using a recursive algorithm. Matrices [L]  and [ Ul have the same structure as the lower and upper parts 
of [A]  respectively. In forming [L]  and [Ul, a parameter a (usually a = 0.34.5) is employed so that the 
[L][Ul  product is as close as possible to the original matrix [A] .  Numerical tests demonstrated the 
insensitivity of the convergence rate to the value of a. 

In the first 2D flow problem examined, the MSIP was applied for both the five-node and the nine- 
node (full-stencil) finite difference discretization of (1 6).  A comparative study of the two formulations 
is carried out and discussed. It must be pointed out that the overhead in computational cost of the full- 
stencil factorization is important only in 3D applications. 

The second solution scheme (Solver P2) is based on a combined application of a preconditioning 
technique and a Krylov subspace method. Solver P2 shares the features of the restarted generalized 
minimum residual algorithm' using the MSIP as preconditioner. An equivalent problem to (16) is 
formed where the preconditioned residual 

is minimized. In equation (18) [PI is an easily invertible approximation of [A]  and as such the 
factorization (1 7) is used. In order to advance the solution from iteration (n) to iteration (n + l), the 
preconditioned residual multiplied by an acceleration parameter p is added to the existing solution 
vector ;(") according to the expression 

;(n+l) = ;(n) + p i ( " ) .  (19) 

The calculation of 
(n + 1) and its final expression is given as 

is based on the minimization of the preconditioned residual at the next iteration 
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where 

Expressions (21) result from the application of the Arnoldi procedure as used in the restarted 
GMFES(1) algorithm.' According to equation (21c), vector is calculated through the following two- 
step procedure. 

Step 1 

Step 2 

[U]? = ;j;'. 

The difference between Solvers P1 and P2 can be better understood if the equivalent expression to 
(19) is written for the MSIP as well, which reads 

(22) ;(n+l) = ( ) - i ( n ) .  G n  
From the comparison of equations (19) and (22) and the definition of the acceleration parameter ,!? it is 
evident that Solver P2 employs a weighted, over the whole field, correction to the current values of the 
dependent variables. This was proved more efficient, mainly during the early phases of the 
computation when the effects of the arbitrary initialization need to be dumped. It is also evident that 
the numerical scheme (1 9) is a Newton-like procedure. 

5 .  RESULTS 

5.1. Laminarflow in a channel with a smooth expansion 

The first problem examined herein is the laminar flow in a symmetric channel with a smooth 
expansion, proposed by P. Roache in the Workshop of the IAHR Working Group on Refined Modelling 
of Flow. l4 The shape of the two-dimensional channel depends on the flow Reynolds number; the lower 
side-wall of the channel is defined through the expression 

O < x < R e / 3 .  

In the present paper two flow cases are examined, which correspond to Reynolds numbers equal to 10 
and 100, using two different computational grids. The geometry and inlet flow conditions define a 
symmetric flow problem and only half of the channel is discretized. The geometry and computational 
grid for the Re= 10 case, consisting of 41 x 31 nodes, are presented in Figure 2. Since the total 
channel length is equal to Rel3, the flow domain corresponding to the Re = 100 case is much longer 
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Figure 2. Quasi-orthogonal computational grid for the channel with a smooth expansion (Re = 10) 

and a finer grid with 93 x 3 1 nodes was used. Both grids were made quasi-orthogonal by means of an 
elliptic grid generator incorporating appropriate source terms which control the distribution of grid 
lines. 

At the inlet a hlly developed velocity profile is imposed which reads 

where the co-ordinate y is zero at the lower point of the inlet cross-section. The inlet pressure is 
calculated through a zero-derivative condition. Along the symmetry line, symmetry boundary 
conditions are applied, while zero pressure is defined at the exit. 

In Figures 3 and 4, results for the two test cases in the form of pressure and vorticity distributions 
along the lower solid wall are presented. The pressure distribution over the grid nodes lying along the 
solid wall is obtained by extrapolating the cell-centred values in the direction normal to the wall. As far 
as the wall vorticity is concerned, it is obtained through a one-sided, second-order finite difference 
scheme using the interpolated velocity components over the grid nodes. The calculated distributions 
are compared with Cliffe et al.5 predictions” which have been considered as the reference solution. 
The pressure distributions shown in these figures are normalized, so that a zero wall pressure is 
obtained at half the channel length. Excellent agreement between the calculated and Cliffe et al.’s 
results can be observed. 

The Re = 10 case was also chosen for the comparison of the two numerical algorithms proposed for 
the solution of the pressure correction equation. Calculations were performed using the modified 
strongly implicit procedure (Solver P 1) and the preconditioned minimal residual technique (Solver P2). 
Figure 5 illustrates the convergence history of the pressure equation for the two aforementioned 
solution methods. In both cases the incomplete LU decomposition (Solver P1) was used for the 
solution of the momentum equations. Solver P2 is more efficient in terms of convergence rate (when 
the iteration number is used as abscissa), so its implementation in the solution of the pressure 
correction equation is recommended. In fairness, Solver P2 is more time-consuming (per iteration) 
than Solver P1, but even if this difference is taken into consideration, it still remains more efficient than 
P1 on the basis of the same convergence tolerance. 

The comparison of the two solvers was based exclusively on the pressure correction equation, where 
differences are more pronounced. The momentum equation in the primitive flow direction (x- 
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Figure 3. Wall pressure distribution for the channel with a smooth expansion for Re = 10 and 100 

component) exhibits a similar convergence behaviour, while the y-momentum equation is quite 
insensitive to the pressure correction solver. For all equations the convergence rate is monotonic in the 
general sense. The convergence curves are wavy, however, around a mean descending straight line 
owing to the decoupling of equations. This waviness can be partially attenuated via optimum relaxation 
factors. Qualitatively similar results and conclusions can be drawn when the Re= 100 case is used 
instead. 

For the studies discussed so far, the discretized momentum and pressure correction equations 
involved five coefficients, namely the central node and its four closest neighbours. Any contribution 
from the discretized non-orthogonal cross-terms was treated explicitly by lumping it into their right- 
hand side. In order to investigate the relative advantages of using a nine-entry coefficient matrix in the 

R e = l O  Cli f fe e t  a1 
Re= 100 Present  Method 

ooooo Re= 100 Cliffe e t  al 
2.0 
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Figure 5. Convergence history for the pressure correction equation, Re= 10: (a) Solver P1 (five node molecule); (b) P2 (five- 
node); (c) P2 (nine-node) 

pressure correction equation, an intentionally non-orthogonal grid was built. The Re = 10 case was re- 
examined using both discretization schemes and Solver P2 for the pressure correction equation. The 
convergence history of the continuity equation for nine-point discretization is also included in Figure 
5. As expected, the nine-coefficient discretization leads to a faster convergence rate in terms of 
iterations. However, this difference in convergence rate does not account for the real difference in 
computational time required, since the factorization of the nine-entry matrix is approximately 30% 
slower. 

All runs were carried out using an underrelaxation factor w = 0,50 for the momentum equations. No 
relaxation factor was implemented in the pressure correction equation. 

5.2. Steady flow past a cylinder 

The second two-dimensional flow problem examined is the steady flow past a cylinder at Reynolds 
numbers (based on the diameter 6) ranging from 20 to 100. It is known16 that steady solutions for the 
flow around a cylinder become experimentally unstable for Reynolds numbers greater than 40. On the 
other hand the Re = 100 case seems to be the upper limit for which steady fields can be reliably 
determined by solving the complete flow domain around the ~y1inder.l~ In the literature there are a few 
papers reporting solutions for Reynolds numbers greater than 100 by imposing symmetry conditions 
along the split line which emanates from the back stagnation point; this is an artifice which increases 
the stability of the solution procedure. In the present study the complete domain around the circular 
section was numerically modelled using an 0-type mesh. The external radius of the 101 x 101 0-type 
grid used for the Re = 20 and 40 cases was 2 5 4  for the Re = 100 case the external radius of the grid 
was 50d and 15 1 nodes were placed in the radial direction. 

Vorticity and pressure coefficient distributions along the cylinder surface for Re = 20, 40 and 100 
are shown in Figures 6 and 7 respectively. The pressure coefficient is defined as 
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Figure 6. Vorticity distribution along the cylinder surface: (a) Re = 20 and 40; (b) Re = 100 

where pt  is the pressure at the front stagnation point and Knf is the infinite velocity. The results are 
compared with computational results from Reference 17. In the present study three discretization 
schemes for the convective part of the momentum equations are used at Re=20 and 40. Results 
obtained using the QUICK and hybrid discretization schemes are in better agreement, while the 
upwind scheme fails to reproduce the correct peak values of pressure and wall vorticity. Two- 
dimensional plots of the velocity fields calculated using the QUICK scheme are shown in Figure 8 for 
Re = 20 and 40. 
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Figure 7. Pressure coefficient distribution along the cylinder surface: (a) Re = 20 and 40; (b) Re = 100 

Figure 9 shows the convergence history for the Re=40 case, demonstrating the excellent 
convergence properties of the proposed algorithm. Only the momentum equations were underrelaxed 
using o = 0.50. 

5.3. LaminarJow in a 90" bend of square cross-section 

The proposed algorithm was also used for the numerical prediction of the three-dimensional 
developing laminar flow in a bend of 90" turning angle and square cross-section, for which 
experimental data are available." The Reynolds number of the flow is 790 based on the bulk velocity 
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Figure 9. Convergence history for the flow around the cylinder, Re=40, 101 x 101 grid nodes: P.C.E., pressure correction 
equation; M.E., momentum equations 
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I 

Figure 10. Perspective view of the 3 D  bend 

and the hydraulic diameter Dh. A perspective view of the channel, along with useful notation, is shown 
in Figure 10. The flow is symmetric, allowing only half of the channel to be analysed. According to 
Figure 10, the Greek letters a and p are used to denote any edge lying on the symmetry plane, with tl 
corresponding to the inner radius (Rin = 0.072 m) and fi denoting the outer radius (Rout = 0.1 12 m) of 
the bend. The grid used consisted of 121 x 26 x 35 nodes in the streamwise, spanwise and radial 
directions respectively. Thirty-seven cross-planes were distributed inside the bend at equal angular 
distances, while the remaining planes covered the upstream and downstream straight extension parts. 

A uniform velocity profile was imposed at the inlet plane located at a distance 8.5Dh upstream of the 
entrance of the bend (# = 0"). Thus the calculation started one hydraulic diameter upstream of the real 
inlet plane of the experimental facility (-7.5Dh), allowing the formation and development of a thin 
boundary layer which is very close to the experimental data at the subsequent measurement stations. A 
similar treatment was also used by other researchers. 19,*0 Zero pressure level was imposed at the exit 
plane. 

The calculated contours of the streamwise velocity component at various cross-sections upstream of, 
inside and downstream of the bend are shown in Figure 11. In the same figure the corresponding 
measured distributions are also plotted, with broken lines, in the lower half of each cross-section. As 
expected, the first planes reflect the effects of the imposed uniform inlet velocity profiles. Thus, as 
shown in Figures 1 l(a) and 1 l(b), the calculated flow acceleration is lower than the measured one. 
Further downstream the calculated and measured distributions are in satisfactory agreement; see 
Figures 1 l ( c t 1  l(0. After the # = 30" cross-section the flow is accelerated close to the inner radius 
wall owing to strong secondary flow effects. These effects could be identified in Figure 12, where the 
secondary velocity field over the q5 = 90" cross-section is presented. 

Figure 13 illustrates in more detail the streamwise velocity patterns at five cross-sections; for each 
cross-section, velocity profiles are presented in five radial positions, defined as 

R = Rout - $(Rout - R i d ,  

where $ = 0.1, 0.30, 0.50, 0.70 and 0.90, spanning from the lower wall to the symmetry plane. The 
radial velocity component is presented in Figure 14 at the same spanwise transverses. This figure 
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C 

Figure 1 1. Calculated (upper half, full lines) and measured (lower half, broken lines) non-dimensional streamwise velocity 
component contours at various cross-planes: (a) x = - O.25Oh; (b) 9 = 30"; (c) 9 = 60"; (d) 4 = 77.5"; (e) x = 0.254,; (f) 

x = 2.54, 
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Figure 1 1. (Continued) Calculated (upper half, full lines) and measured (lower half, broken lines) non-dimensional streamwise 
velocity component contours at various cross-planes: (a) x = - O.25Dh; (b) q5 = 30"; (c) C#J = 60"; (d) q5 = 77.5"; (e) x = O.25Dh; 

(f) x = 2.54,  
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Figure 1 1 .  (Continued) Calculated (upper half, full lines) and measured (lower half, broken lines) non-dimensional streamwise 
velocity component contours at various cross-planes: (a) x = - 0.25&; (b) + = 30"; (c) + = 60"; (d) 4 = 77.5"; (e) x = 0.25&; 

(f) x 2.501, 
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Figure 12. Secondary velocity field over the 4 = 90" cross-section 

certifies, from a different point of view, the previous conclusions. Both velocity components in Figures 
1 1, 13 and 14 are non-dimensionalized by the bulk velocity. 

Finally, the convergence history using Solver P2 for the pressure correction equation is shown in 
Figure 15. The pressure correction equation seems to behave as in the previously examined 2D cases 
and exhibits a monotonic convergence in the global sense. Owing to the 90" turning angle of the bend, 
two Cartesian velocity components are associated with the primitive flow direction. The momentum 
equations in these two directions present a convergence history which is very similar to that of the 
pressure correction equation. On the other hand the spanwise momentum equation also converges in a 
monotonic way but with unpredictable fluctuations around a mean value. 

9=30 deg )=6Q Jeg 
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Figure 13. Calculated (full lines) and measured (symbols) non-dimensional streamwise velocity component profiles at various 
radial positions + and cross-planes: (b) 4 = 30"; (c) 4 = 60"; (d) 4 = 77.5"; (e) x =  0.25&; (0 x =2.54,  
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Figure 14. Calculated (full lines) and measured (symbols) non-dimensional radial velocity component profiles at various radial 
positions $ and cross-planes: (b) 4 = 30"; (c) 4 = 60"; (d) 4 = 77.5; (e) x = 0.250h; (f) x = 2.54, 

For this case the CPU time per node per iteration was approximately 0.1 ms on an MIPS 8010 
processor. The considerably low computational time is attributed to the fact that a single factorization 
(which is a time-consuming task) is carried out for all momentum equations. It must be pointed out that 
the required iteration number for practical calculations is much less than the one presented in the last 
figure, which renders the presented algorithm suitable for engineering computations. 
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Figure 15. Convergence history for the 3D laminar flow in the bend: (a) momentum equations; @) pressure correction equation 
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6. CONCLUSIONS 

A solution method for laminar incompressible flows has been developed. It makes use of a segregated 
approach wherein the momentum and pressure correction equations are successively solved by means 
of fast elliptic solvers. It was demonstrated that the segregated approach can be economic in CPU time 
and efficient provided that appropriate implicit solvers are used for each equation. The modified 
strongly implicit procedure (MSIP) for scalar equations is proposed for the momentum equations. It is 
worth noting that the factorization process is paid once per iteration and that the convergence rate is 
insensitive to the value of the parameter a involved in the MSIP. A degenerated variant of the restarted 
preconditioned generalized minimal residual technique was used in place of the MSIP for the pressure 
correction equation and this accelerated convergence and improved reliability. The cost of using the 
preconditioned GMRES(1) algorithm turns out to be affordable thanks to the very small number of 
search directions; since the MSIP acts as preconditioner to the GMRES method, the factorization cost 
has to be paid in any case. The effect of moving all non-orthogonal cross-terms of the pressure 
correction equation in the RHS slows down the convergence rate but leads to faster iterations. 
Underrelaxation is important for the momentum equations but not for the pressure correction one. Best 
results were obtained when the QUICK scheme was used for the convective part of the momentum 
equations. 
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